
Article Identifier 60th ILMENAU SCIENTIFIC COLLOQUIUM 

DOI:  Technische Universität Ilmenau, 4 – 8 September 2023 

URN:  URN: urn:nbn:de:gbv:ilm1-2023isc:1 

 

© 2023 by the authors. – Licensee Technische Universität Ilmenau, Deutschland. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution 

ShareAlike-4.0 International License, (https://creativecommons.org/licenses/by-sa/4.0/). 

 

 

CAPTURING 3D TEXTURED INNER PIPE SURFACES FOR SEWER INSPECTION 

 

Darko Vehar, Rico Nestler, Karl-Heinz Franke 

 

Zentrum für Bild- und Signalverarbeitung e. V., 

Werner-von-Siemens-Str. 12, D-98693 Ilmenau 

URL: www.zbs-ilmenau.de 

 

 

ABSTRACT 

 

Inspection robots equipped with TV camera technology are commonly used to detect defects in 

sewer systems. Currently, these defects are predominantly identified by human assessors, a 

process that is not only time-consuming and costly but also susceptible to errors. Furthermore, 

existing systems primarily offer only information from 2D imaging for damage assessment, 

limiting the accurate identification of certain types of damage due to the absence of 3D 

information. Thus, the necessary solid quantification and characterisation of damage, which is 

needed to evaluate remediation measures and the associated costs, is limited from the sensory 

side. 

 

In this paper, we introduce an innovative system designed for acquiring multimodal image data 

using a camera measuring head capable of capturing both color and 3D images with high 

accuracy and temporal availability based on the single-shot principle. This sensor head, affixed 

to a carriage, continuously captures the sewer's inner wall during transit. The collected data 

serves as the basis for an AI-based automatic analysis of pipe damages as part of the further 

assessment and monitoring of sewers.  

 

Moreover, this paper is focused on the fundamental considerations about the design of the 

multimodal measuring head and elaborates on some application-specific implementation 

details. These include data pre-processing, 3D reconstruction, registration of texture and depth 

images, as well as 2D-3D registration and 3D image fusion.  

 

 Index Terms – Snapshot-3D, sewer inspection, structured light, multimodal imaging 

 

1. INTRODUCTION 

 

The vast sewer network of Germany, extending approximately 550,000 kilometers, demands 

regular inspection and maintenance. Traditionally, tele-operated robots equipped with cameras 

are deployed to detect defects within these sewer systems. These inspection robots are compact 

due to the need to navigate pipes where over 90% have an inner diameter of 200 mm, and 

usually incorporate a forward-facing camera. This camera provides live or recorded visual data 

to an exterior monitor. Due to the fact that these systems rely heavily on human operators to 

identify damages, the process is subjective and dependent on the inspector’s expertise. 
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Despite recent advancements in AI for damage classification, automatic detection of damage in 

sewer sections and the creation of rehabilitation plans, are yet to be fully integrated into sewer 

inspection procedures. AI has demonstrated effectiveness in evaluating such omnidirectional 

color images [1], but is still unable to detect certain types of damage that require 3D technology 

for robust detection, such as deposits, sleeve offsets, root ingress, and spalling. These specific 

damages can reduce pipe diameter and in many cases, only rough quantitative estimates can be 

made by experts trough analyzing the 2D images. This necessitates a method for accurately 

measuring the inner walls of sewer pipes in 3D, which is the focus of this article. 

 

1.1 Related work for 3D sewer inspection 

The pioneering systems designed to capture sewer geometry and its defects utilized laser 

profilometry [2][3][4][5], one of the most widely used techniques for assessing the pipe 

geometry to this day. The process involves projecting a laser beam inside the pipe, forming a 

ring that is captured by an omnidirectional camera. By extracting the contour of this laser ring 

from the image, the cross-section of the pipe can be measured, allowing for the identification 

of damages through deviations from the ideal shape. Despite their simplicity and robustness, 

these systems are limited in the resolution of the 3D data they can provide. 

 

3D surface models of pipes can also be generated through dense stereo matching [6][7] from 

an image sequence captured by a forward-facing camera. These systems typically use feature 

points and/or IMU to determine the camera pose for each image, and then employ passive stereo 

correspondence to compute the 3D model. However, this method often fails on damage-free 

parts of pipes due to their homogenous (non-textured) surface, which is unfavorable for passive 

stereo matching. 

 

A variety of systems, like the Kinect1 or Intel RealSense, are commercially available for 3D 

imaging. These can be used either in a forward-  [8] or downward-facing [9] configuration, on 

a tilting platform  [10], or arranged in a convergent setup [11]. Yet, their applicability is 

confined to walkable sewers or larger pipe diameters due to the size of the systems and the 

minimum detection range of the cameras. 

 

The only system known to use dense structured light, other than the Kinect1 sensor, was 

presented in [12]. This approach only examines 120° of the full 360° pipe and relies on a 4-

frame phase shifting method using a static projected pattern and a moving camera. They require 

an inertial measurement unit to obtain precise camera positions for each captured image, which 

are then used to perform the 3D reconstruction. In contrast, our method robustly reconstructs 

the 3D surface from a single camera image of a projected structured light pattern, without 

additional sensor data, and allows a transverse speed of up to 100 mm/s. It should be noted that 

most conventional non-3D sewer inspection systems do not exceed this speed. 

 

In this paper, we concentrate on a hardware system we have engineered for the acquisition of 

textured 3D images, complemented by supporting algorithms. We will highlight how 

innovative design decisions allow for our methods to be applied effectively in the challenging 

conditions found in sewer pipes. Our system creates textured 3D models of pipes with enough 

detail to characterize and quantify damage according to DIN-EN 13508. 
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2. THE DESIGN AND FUNCTION OF THE MULTIMODAL SENSOR HEAD 

  

The multimodal sensor head is the primary feature of our approach, which incorporates camera-

projector modules as depicted in Figure 1. A key component of such a module consists of a 

projector unit, accompanied by a 3.2-megapixel camera for capturing the sewer's surface 

according to the structured light principle in three dimensions (3D) as well as its colored texture. 

 

The projector and camera units have lenses with identical focal lengths and parallel, offset 

imaging beam paths. We further innovated our design by introducing a custom laterally coded 

binary pattern [13], implemented as a photomask for projection. A power LED is utilized for 

projection illumination, its radiation being coupled into the projection beam path. This is 

achieved with a combination of a condenser, photomask, and a lens at the front. We placed 

additional LEDs at the front of the module to serve as a diffuse light source for capturing colored 

texture images of the surface. 

 

The module is intricately engineered to accommodate a close-up range varying between a 

minimum of 60 mm and a maximum of 250 mm, alongside wide field angles of 76° vertically 

and 61° horizontally. This complex configuration imposes significant challenges on the optical 

design. The resulting large stereo angle of 29° provides a high depth resolution of 0.2 mm at a 

200 mm diameter. As the inspection robot traverses the sewer network, it cyclically captures 

the data. The sensor and lighting control have been designed to ensure a substantial overlap of 

images in the direction of travel. This is crucial for enabling robust stitching of the individual 

measurements during subsequent processing stages. 

 

The sensor head is composed of six camera-projector modules. These modules are set with a 

viewing direction orthogonal to the sewer pipe axis, allowing them to capture the entire 

measurement range (ring) at high resolution. As illustrated in Figure 2, the modules are installed 

in a carrier with a 150 mm outer diameter and a 600 mm length. This arrangement enables a 

full 360-degree 3D capture of the sewer surfaces. The entrance pupils of all modules lie on the 

common carrier axis which guarantees the required overlap of data fields for stitching. It is 

effective even when the measuring head is off-center in the sewer pipe, as well as for different 

sewer diameters. This practical consideration leads to our unique, axially offset spiral 

arrangement of the camera-projector modules. 

 

 

 

 
 

Figure 1: Schematic of the camera-projector module (left) and the finished prototype (right) for 3D surface 

acquisition as well as its colored texture. 
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Figure 2: Sensor head with an outer diameter of 150 mm and length of 600 mm consists of six structured light 

modules for 360 degree capture of sewer pipes. Photo courtesy of JT-elektronik GmbH. 

 

3. PROCESSING PIPELINE 

 

The processing pipeline in this system involves a few challenges due to the use of a single 

camera in each module to sequentially capture texture and 3D imagery. Compounding this, the 

camera is constantly in motion throughout the sewer pipe. Therefore, a set of algorithms is 

required to perform a functionally essential task: capturing textured and 3D images of the pipe’s 

inner walls during continuous capture on a moving carrier and mapping each corresponding 

texture to a 3D image. 

 

3.1 Color and shading texture correction 

The role of spatially-resolved detection of materials, visually represented as color or texture 

images, is essential for identifying significant regions and defect features in sewer lines. In this 

respect, chromaticity becomes a critical feature for detecting and differentiating defects during 

subsequent processing stages. Maintaining color consistency is also a crucial prerequisite for 

3D processing of the image data. Any disturbances in this spatially-resolved color texture, 

whether caused by lighting, lens, sensor, or variations in geometry of the primary image data, 

must be identified and eliminated. In our particular scenario, images are often affected by color 

shading, which manifests as shifts in chromaticity and brightness. Thus, it becomes essential to 

correct these systematic influences on the color textures. 

 

 
Figure 3: Illustration of a debayered color image with visible vignetting toward the periphery of the image (left). 

It is followed by the results of brightness shading correction (middle) and chromaticity correction (right). 
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Figure 4: A DN200 pipe section in 3D with a greenish hue and shading (top). The same section after 

radiometrically applied color and shading corrections (bottom). 

 

Applying conventional shading correction to the color image through a planar white reference 

is not feasible due to the variable distance between camera and scene objects, along with the 

complex shading influences, which often lead to artifacts like chromatic flares. To circumvent 

this issue, we employ a method where a reference light is estimated from images of the captured 

sewer section and color shading correction is applied using lightness and chromaticity features 

from the L*a*b* color space in all primary color channels. The efficacy of this correction can 

be appreciated from Figure 3 and Figure 4. 

 

Beyond color correction, our process also mitigates motion blur that arises due to movement 

during image capture. This is achieved by leveraging prior knowledge of the cylindrical pipe 

geometry and utilizing a depth-graded unfolding method. In particular, we employ a parametric 

1D - Wiener filter to enhance the sharpness of the color texture in a direct procedure of forward 

restoration. 

 

3.2 Geometric system calibration and 3D reconstruction 

We create a 3D point cloud using the state-of-the-art principle of triangulation. This process 

requires two matching points in the camera and projector image. These points, both representing 

the same location in the scene, allow us to project rays into 3D space using known geometric 

calibration parameters. The intersection of these rays reveals the desired 3D point. An important 

first step for these geometric evaluations is the calibration of each camera module. 
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Figure 5: Calibration of the camera-projector modules is achieved intrinsically and extrinsically, utilizing several 

images of a calibration pattern (left) captured at varying distances and orientations. Calibration points detected 

in the camera and projector (right) are color-coded according to the re-projection error, serving as a visual 

indicator of calibration precision. 

 

3.2.1 Geometric calibration 

The imaging properties of the camera and the projector (which functions as an inverse camera) 

within each structured light module are approximated using a pinhole model. To address the 

notable lens distortion, we employ a Brown-Conrady distortion model. We captured between 

15 to 20 calibration images for both the intrinsic and extrinsic calibration of the camera and 

projector. These images were obtained using a tripod-mounted target with a checkerboard 

pattern (Figure 5 left). The detection of the target, sub-pixel processing of calibration points, 

and parameter optimization were facilitated using the 3D-EasyCalib toolkit [14].  

 

For intrinsic calibration, the camera matrix is established from images of a calibration target, 

its known world points, and corresponding image points. The calibration of both the projector 

and the extrinsic aspects of a camera-projector module need an additional step. Instead of a 

single image, we captured paired images of each target pose, one with the projected pattern off 

and ambient light on, and vice versa. The target images are processed similarly to the camera 

calibration. Pattern decoding provides the necessary geometric mapping between the image 

planes of the projector and the camera. Local homographies around each checkerboard corner 

are used to transfer calibration points between camera and projector images. The projector 

calibration matrix, as well as the projector's orientation and pose relative to the camera 

(extrinsics), are estimated using the same optimization process as for the intrinsic camera 

calibration. After establishing the intrinsic and extrinsic parameters of the camera and projector, 

we can triangulate corresponding image points that are identified using the procedures 

described in the following section. 

 

3.2.2 Binary pattern 

Our active snapshot-3D approach employs a binary coded spot pattern based on perfect 

submaps [15]. In these pseudo-random arrays, each sub-matrix of a fixed size, or codeword, 

appears exactly once. If a pattern built on perfect submaps covers the entire projector image, 

each projector pixel is uniquely encoded. This encoding is pivotal for solving the camera-

projector correspondence problem. We opted for binary symbols as they allow independence 

from the spectral light interaction of detected objects. We derived the geometric properties of 

the pattern displayed in Figure 6 using the methodology from [13]. The generated pattern has a 

uniqueness window size of 6 by 6, a minimum Hamming distance of 3, and a minimum word 

weight of 4. The pattern is repeated horizontally and vertically to fill the entire projector image. 
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Figure 6: A binary pattern featuring a uniqueness window size of 6x6, utilized in the structured light modules. 

This pattern is repeated horizontally and vertically to cover the entire projector image. 

 

3.2.3 Image decoding and 3D reconstruction 

The computation of a 3D point cloud from a single camera image of the projected pattern is a 

multistep image processing procedure. Initially, a spot enhancement is performed to emphasize 

the spots and suppress the background, followed by local adaptive binarization. Next, the binary 

image is decoded. A regular grid of a consistent size is imposed on each camera pixel, and the 

binary value beneath each grid cell is read. This binary string, or codeword, is then cross-

referenced in the coding table to resolve its position in the base pattern. This process establishes 

camera-projector correspondences. Finally, the 3D points are computed from the corresponding 

points in the respective camera and projector images using the linear triangulation method from 

[16]. A more comprehensive explanation of these steps, leading to the precise 3D point cloud, 

can be found in [13]. 

 

3.3 Mapping of a color texture to the depth image (RGB-D) 

The process of capturing texture and pattern images involves a time-delayed operation executed 

by the same camera. Figure 7 shows the raw data processing steps needed to create a fused 

RGB-D image. Given the continuous motion of the cameras on the inspection robot, 

determining the offset between the 3D and texture images is essential for proper mapping. Since 

the pattern and texture images are distinct in their modalities (3D vs color), direct registration 

through correlation-based methods is not feasible. To overcome this, we capture an additional 

texture image, thereby creating a sequence comprising two texture images and one pattern 

image from a single camera burst. The spatial offset among these captured images is only a few 

millimeters, with all three images captured within 20 ms. Given that the inspection robot 

maintains a roughly constant forward motion within this narrow time window, we infer that the 

spatial position of the 3D pattern image is precisely at the midpoint between the two texture 

images. To determine rotation and translation between the two textures, we employ the 

methodology proposed by Tzimiropoulos et al. [17], which offers speed due to frequency 

domain correlations and robustness due to its global nature. Finally, the color and shading 

corrected texture, as described in Sec. 3.1, is transformed to overlap with the depth image, 

reconstructed as detailed in Sec. 3.2. 

 

 
Figure 7: Processing pipeline for generating a color-textured depth image (RGB-D) 
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3.4 2D/3D-Registration and 3D data fusion of RGB-D-module data 

The process of stitching RGB-D data primarily necessitates registration. This enables optimal 

transfer of texture and depth data of adjacent measurement areas for subsequent measurement 

data fusion. The feature-based 2D/3D registration procedure is illustrated in Figure 8. Ideally, 

we have available RGB-D data of two adjacent measurement regions with a 50% overlap. The 

first step involves finding and matching corresponding feature points [18], which are sought in 

the texture information associated with the depth data. To minimize the search area for 

matching, an initial estimate of transformation parameters is made, primarily based on the 

position information of an odometry module. On mobile robot platforms, a high 3D data rate 

often ensures that data points are already close to each other from image to image, thereby 

narrowing the search area for matching points. The list of candidate feature points is then 

gradually reduced according to various criteria. In the final filtering step, the essential matrix, 

which provides the rotation and the direction vector of the translation, is estimated while 

maintaining adherence to the epipolar condition. However, the calculation is still lacking the 

correct scaling, or magnitude, of the translation. To derive this, the 2D correspondences from 

the texture images are transformed into 3D correspondences using the depth maps and the 

known intrinsic camera parameters. This allows the Euclidean transformation to be resolved 

analytically in a clear and unambiguous manner. Several feature point determination procedures 

have been tested on real measurement data, with A-KAZE [19] features being selected due to 

low computational effort and robustness. 

 

 
Figure 8: The processing pipeline of the feature-based, camera-related 2D/3D registration of sewer pipe interior 

sections. 

 

Data fusion aims to close gaps and statistically reduce measurement uncertainty by 

summarizing corresponding measurement points of adjacent regions in overlap areas. A depth 

image can contain gaps caused by shadows, extreme spatial gradients of surface regions relative 

to the camera and projector, unfavorable size ratios of error object extent and pattern size, as 

well as other uncooperative imaging situations between projected pattern, object surface, and 

camera. Adjacent depth images may also contain gaps, usually located at different places due 

to their differing camera-projector perspectives. By merging the overlapping data, the gaps can 

largely be closed, and the measurement uncertainty in the already gapless areas can be reduced 

due to the multiple measurements. The starting point for data fusion is successful 2D/3D 

registration of the pictorial measurement areas as described in the previous section. Then all 

measurement areas can be transferred into a common coordinate system using Euclidean 

transformation. After outlier correction, the actual merge step takes place, implemented through 
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a block-based approach. All measurement points of the considered area are assigned to 2D 

raster blocks of a defined size. Quality-weighted thinning of the measurement points of each 

block occurs. To ensure minimum measurement point distances, the process is repeated for 

shifted raster blocks. The remaining points are then interpolated and mapped onto a regular grid 

of the target depth image. The end product is a fused RGB-D image as shown in Figure 9. 

 

The process of combining all RGB-D images of each module from the captured section into a 

single 3D textured model is achieved using the global quadratic optimization described in [20]. 

The resultant 3D model, such as depicted in Figure 10, serves as the starting point for either 

automatic or manual multimodal damage classification of a new level. 

 

4. CONCLUSION AND OUTLOOK FOR FUTURE WORK 

 

In summary, this paper illustrates methods for a new level of multimodal acquisition of sewer 

pipe data using camera-projector modules based on a single-shot principle. We have elaborated 

on the optical setup and outlined the process of registering texture and depth information, as 

well as the stitching of measurement data, in the 3D acquisition of inner pipe surfaces. Both the 

hardware and the algorithmic aspects of this approach are innovative, and, as a result, fulfill the 

demanding requirements associated with objective channel inspection. 

 

The sensor head, designed for versatility, can be adapted for usage across a range of sewer 

diameters, from 0.2 to 0.4 meters. Its robust 3D sensors tolerate off-centering within the sewer 

pipe, thereby enhancing its performance in variable conditions. The device has been engineered 

to capture data on-the-go, capable of functioning at a travel speed of up to 100 mm/s. It optically 

images the inner wall of the sewer in 3D, achieving a lateral resolution of 0.1 mm and a depth 

resolution of 0.2 mm. Furthermore, the sensor head records the surface texture in color, 

demonstrating its tolerance to the moisture present on the sewer inner walls, an inevitable 

feature of its operating environment. 

 

Looking ahead, our research and development efforts will concentrate on further miniaturizing 

both the modules and the entire sensor head. By leveraging advancements in miniaturized 

cameras and projectors, particularly those incorporating diffractive optical elements, as 

proposed in [13], we aim to reduce the size of the entire sensor head to match that of the current 

single camera-projector module. Furthermore, we plan to optimize our processing pipeline by 

implementing it more directly on a System-on-Chip (SoC). We believe this will significantly 

reduce data transfer and offline processing time, ultimately improving the overall efficiency 

and usability of our system for sewer inspection and other potential applications. 
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Figure 9: 3D color textured point cloud of a connection between two concrete pipes (top) and between a plastic 

and concrete pipe (bottom) as captured by a structured light module. The level of detail in both texture and 3D 

can be seen on the ruler and tape measure, as well as the pipes stacked at varying depths. Additional images and 

videos can be found at www.zbs-ilmenau.de/projekte/auzuka.  

 

                
Figure 10: Section of DN400 concrete pipe stitched, as captured with a single module (left), completely assembled 

model of the pipe, from all modules (right). The images were taken in the laboratory of ZBS e. V. 
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