Stereo acquisition with a filter wheel multispectral camera on a goniometric measuring setup

Julie Klein^a, Simon Larsson^a, Vjaceslav Brunnmeier^a, Rico Nestler^b, Karl-Heinz Franke^c, Bernhard Hill^d, Dorit Merhof^a

^a Institute of Imaging and Computer Vision, RWTH Aachen University

^b Computer Graphics Group, Ilmenau University of Technology

^c Zentrum für Bild- und Signalverarbeitung e.V. Ilmenau (ZBS)

^d Research Group Color and Image Processing, RWTH Aachen University

20. Workshop Farbbildverarbeitung / 40. DfwG Jahrestagung 24.09.2014

Introduction

- Motivation
- Experimental setup
- Stereo systems
- Calibration of stereo system
- Extraction of depth information
- Results
- Conclusions

Motivation

Goniometric measurement

Measurement of a material with

different illumination directions

Goniometric measurement

Measurement of a material with

- different illumination directions
- different viewing directions

Example of acquisition

- Numerous positions available
 - → stereo systems for depth information?

- Numerous positions available
 - → stereo systems for depth information?
- Simulation
 - Angle between both cameras?

- Numerous positions available
 - → stereo systems for depth information?
- Simulation
 - Angle between both cameras?

- Numerous positions available
 - → stereo systems for depth information?
- Simulation
 - Angle between both cameras?

- Numerous positions available
 - → stereo systems for depth information?
- Simulation
 - Angle between both cameras?
 - Position of stereo system?

- Numerous positions available
 - → stereo systems for depth information?
- Simulation
 - Angle between both cameras?
 - Position of stereo system?

Experimental setup

Measuring setup

- Object and camera can be rotated
- Light source is fixed
- → In-plane measurement
 - different acquisition angles α
 - here: illumination angle 45°
- Multispectral camera for accurate color information

Multispectral camera

600

wavelength

650

700

550

- Monochrome camera SciCam SC4022, 2072x2136 pixels
- Lens
- Between them: filter wheel with 19 filters
 - central wavelengths from 400 to 760nm
 - steps of 20nm
 - bandwidths of 10nm

500

450

0.2

400

750

Stereo systems

Considered systems

- Illumination at +45°
- Acquisition angle α between +30° and -30° in steps of 5°
- Stereo systems with angles of 5°, 10°, 15°, 20°, 25° and 30° between both cameras

Stereo imaging

- Corresponding image points x_{left} and x_{right}
- Intrinsic parameters: focal length, pixel size, ...
- Extrinsic parameters: rotation and translation
- \triangleright Calculation of underlying object point x_{3D} possible

Calibration

Camera calibration

- Method from Bouguet:
 - checkerboard pattern imaged from different viewing positions
 - corners detected in all images
 - correspondences give camera parameters

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html

Positions for calibration

- 46 camera positions
 - 13 in-plane (in orange)
 - 33 out-of-plane, by tilting the calibration pattern

Extraction of depth

Reconstruction algorithm

Input: stereo images, color channels considered separately

Reconstruction algorithm

Input: stereo images, color channels considered separately

Reconstruction algorithm

Input: stereo images, color channels considered separately

Reconstruction algorithm

Input: stereo images, color channels considered

Reconstruction algorithm

Input: stereo images, color channels considered

- Output: 3D positions of feature points
- Data for all color channels merged

Point matching

Method based on feature points: fast computation

Point matching

- Method based on feature points: fast computation
- Scale Invariant Feature Transformation (SIFT)
 - Invariant to image scale and rotation
 - Robust

Outlier cancelation

Epipolar constraint given stereo geometry

$$x_{left}^T \cdot F \cdot x_{right} = 0$$
 x_{left}

Outlier cancelation

Epipolar constraint given stereo geometry

Point pairs that do not verify the constraint are canceled

Triangulation

- Calculation of 3D position of underlying object point x_{3D} for detected image points x_{left} and x_{right}
- Noise etc. ightharpoonup rays of x_{left} and x_{right} do not cross
- Possible estimation of $\widehat{x_{3D}}$: middle of the perpendicular distance of the rays

Results

Measured objects

Cover of a box

Rec. points should lie on a plane

Half sphere

Radius should be 75mm

Advantages of multispectral imaging

Textures of object surface have different spectral characteristics

Channel 6

Channel 9

Channel 11

Channel 16

Advantages of multispectral imaging

- Different feature points detected in each of the 19 color channels
- Box cover with feature points from 19 color channels superposed
- Channels

```
      1
      2
      3
      4
      5

      6
      7
      8
      9
      10

      11
      12
      13
      14
      15

      16
      17
      18
      19
```


Evaluation for box cover

 Reconstructed object points for cover box and background

Evaluation for box cover

- Reconstructed object points for cover box and background
- Only points of cover box selected

Evaluation for box cover

- Reconstructed object points for cover box and background
- Only points of cover box selected
- Plane fitted on this data

Evaluation for box cover

- Reconstructed object points for cover box and background
- Only points of cover box selected
- Plane fitted on this data
- Deviations from this plane for the points of the box cover
- Desired value: 0mm

Evaluation for half sphere

Reconstructed object points

Evaluation for half sphere

- Reconstructed object points
- Sphere fitted on this data

Evaluation for half sphere

- Reconstructed object points
- Sphere fitted on this data
- Radius of the sphere calculated
- Reference value: 75.0mm

Conclusions

Conclusions

- 19-channel camera on a goniometric setup for angledependence of the reflectance functions of materials
- Different purpose here: extract 3D information simultaneously
- First test with stereo systems: simulation of several angles and several positions
- Complementary results with 19 color channels
- Best accuracy of reconstructed 3D points
 - with angle 20° between both cameras
 - for stereo system perpendicular to the surface

Thank you for your attention

