

Image Processing, Image Analysis and Computer Vision

Measuring large areas by white light interferometry at the nanopositioning and nanomeasuring machine (NPMM)

Authors:

Daniel Kapusi¹
Torsten Machleidt
Karl-Heinz Franke
Eberhard Manske
Rainer Jahn

Outline

- Motivation
- Measurement setup
- Principles of scanning white light interferometry
- Interferogram analysis methods
- Measuring large areas
- Determination of sensors orientation and scaling
- Correction of sensors tilt
- Exemplary results
- Software environment
- Conclusion
- Outlook

Motivation

Basic set-up of the NPMM according to the comparator principle of Abbe

- ➤ NPMM features a measuring volume of 25 x 25 x 5 mm³ with a resolution of 0.1 nm
 - Advantages for white light interferometry
 - ✓ Low positioning noise
 - ✓ Large perpendicular pass trough range with 5 mm
 - ✓ Stitching of adjacent single measuring results to a common large height map

Measurement setup

- White light interferometry sensor
 - Tube from a focus sensor coupled with a Mireau-interference objective
 - 14-bit monochromatic CCD camera (FireWire 1394b, up to 30 fps)
 - Halogen light source
- > NPMM is placed on an oscillation-damping system
- Acoustic hood

1.44 Mio. pixel

- Z-scan with determination of zero optical path difference per pixel
- Parallel measurement of 1.44 million data points (pixel)

3d estimation of the ring structure

Interferogram analysis methods

- Envelope evaluation
 - Suitable for rough and smooth surfaces
 - Envelope extraction by Matched Filters, Hilbert-Transformation, fast Bucket methods, et al
 - Approximation of the envelopes peak position by Gaussian or parabola fit, iterative gradient-based peak search, et al

Phase evaluation

- Suitable for smooth surfaces
- Phase shift determination by fast Bucket methods (such as Carré) or more precise Fourier analysis
- Allocation of fringe order by envelope evaluation or spatial phase unwrapping

Interferogram analysis methods

Comparison of the results of measuring a PTB layer thickness standard:

- > Sampling step width in perpendicular direction: **dz = 77 nm**
- \triangleright Given step height (ISO 5436-1) of section R1: H_{R1} = 69.1 nm ± 1.2 nm

Envelope evaluation:

$$H_{R1,N=30}$$
 = 69.11 nm ± 0.19 nm $\sigma(H_{R1,N=30})$ = 0.51 nm

Phase evaluation:

$$H_{R1,N=30}$$
 = 69.26 nm ± 0.04 nm $\sigma(H_{R1,N=30})$ = 0.11 nm

Measuring large areas

- Perpendicular orientation
 - Skipping of height-steps with high speed, where no fringes occurring
 - Definition of multiple passthrough ranges per measuring area

Lateral orientation

- topography independent stitching of adjacent measuring areas
- orientation and pixel scaling of the camera according to the machine coordinate system has

Determination of sensors orientation and scaling

Correction of sensors tilt

x_s resp. y_s

Exemplary results

Software environment

- Software package VIP (Visual Image Processing) –Toolkit from
 - ✓ Rapid prototyping of image processing solutions
 - ✓ Includes large and extensible algorithm libraries

<- Remove upper

Measuring progress

- ✓ Graphical pipeline editor
- ✓ Graphical user interface

Calibration MoveToPoint Supervised positioning

+x -y +

Control

x-Position [mm]

Measuring Regions Stitch CamCoord X

<- Add/Select left

<- Remove left

10.7461651649

Start Measurement

<- Insert before

Calculation progress Thread1

Thread2

Insert after ->

Abort

Remove right ->

Remove lower ->

Conclusion

- Development of a white light interferometry application for the NPMM
 - ✓ Based on a focus sensor measurement setup
 - ✓ Precise height extraction by envelope or phase evaluation
 - ✓ Skipping of large height differences by jumping to multiple defined passthrough ranges
 - ✓ Stitching of adjacent measuring regions independent of topography
 - Determination of sensors orientation and scaling in advance by a measuring procedure
 - Correction of sensors tilt needs only a small overlap

Outlook

- Redesign of the measurement head
 - ✓ Zerodur base plate with sensor insertion apparatus
 - ✓ Sensor set-up made of Invar for inserting into the base plate
 - ✓ More high-grade compact microscope tube with higher magnification
 - ✓ Set-up for manual sensor aligning

- ➤ This project is sponsored by the ministry of education and arts of the Free State of Thuringia (Germany) under the sign B 514-06 007
- Thanks all those colleagues at the Technische Universität Ilmenau and the ZBS Ilmenau e. V., who have contributed to these developments

Thank you very much for your attention!