Vision-Based Surface Inspection of Aeronautic Parts using Active Stereo

Markus Brandner
Institute of Electrical Measurement and Measurement Signal Processing
Graz University of Technology, Austria
Project Goals:

- Image processing techniques
- Time/cost reduction
- Fields of application:
 - Assembly process
Required Tasks:
• Fast and accurate measurements
• Handle ‘aeronautic surfaces’
• Applicable to ‘aeronautic volumes’
• Integration into automated processes (robot, …)

Mobile Surface Inspection
[Brandner et al., Sensor+Test 2007]
Structure of the Talk

• Introduction
• Active Stereo
• Sensor Geometry
• Sensor Calibration
• Experiments
• Conclusions
Introduction

• Surface Inspection
 – Geometric Parameters
 • Position, diameter, distance, thickness, …
 – Surface Quality
 • Roughness, colour, …
 – Areas of Application: Assembly, QC

• ‘Aeronautic Specialities’
 – Surface Properties
 • Materials, coatings, albedo, …
 – Working Volumes
 – Uncertainty Bounds
Inspection Systems

- Manual Gauges
 - Inspection time, repeatability, uncertainty

- Coordinate Measurement Machines
 - Working volume
 - Required infrastructure

- Optical Systems
 - Interferometric systems
 - Large volume
 - Laser radar / laser tracker

- ‘Indoor GPS’
 - Large volume
 - Optical/RF
Vision-Based Inspection

- **Non-Contacting**
 - Sensitive/non-rigid surfaces
- **Cameras as Sensors**
 - CCD/CMOS technology
 - 2D sensors
- **Difficulties/Limitations**
 - Surface properties
 - Line of sight condition
 - Geometric complexity / real-time processing
 - Environment: ambient light, reflections
- **Structured Light**
 - Triangulation sensors
 - Coherent/non-coherent illumination
 - Static/dynamic patterns
Active Stereo Setup

- **Stereo Setups (Greek: solid)**
 - Traditional: combination of cameras
 - Reconstruction of geometric entities in 3D
 - Calibrated cameras (Intrinsics+Extrinsics)
 - Structured light to aid correspondence search
 - but usually encoded (spatial, temporal)

- **Active Stereo Setups**
 - Combination of at least one camera and N>1 projectors
 - Reconstruction of geometric entities in 3D
 - Structured light to perform
 - Projector
Active Stereo Setup (II)

- Stereo Reconstruction
 - Intersection of rays
- Required Calibration
 - Camera intrinsics/extrinsics
 - Projector intrinsics/extrinsics
Active Stereo (III)

- **Projector Choice**
 - Size/weight considerations
 - Calibration strategy
 - Energy consumption, illumination intensity
 - Harsh environments (shop floor)

- **Laser Sources**

 → No straight lines!
 → Calibration of the Projector?
Laser Fan Model

- **Geometric Model**
 - Laser centre
 - Approximation of the laser beam for each plane

- **Assumptions**
 - Single centre
 - Virtual plane
 - Polynomial distortion

\[s_i(t) = (p_{i,x}(t), p_{i,y}(t))^T \]

\[S_i(t) = c_L + \alpha(t, a_2 t^2 + a_1, 1)^T \]
Sensor Geometry

- Application: close range measurements
 - Two cameras
 - Two projectors
- 4 Active Stereo Setups
- 1 ‘Passive’ Stereo Setup
Sensor Calibration

• Camera Calibration
 – Intrinsics + Extrinsics (camera stereo pair)

• Calibration Steps
 – Planar calibration grid (ARToolKit Targets)
 – Multiple (known) views (CMM)
 – Non-linear optimisation
Sensor Calibration (II)

- **Laser Calibration**
 - Intrinsics + Extrinsic

- **Calibration Steps**
 - Multiple views, planar target
 - Line intersections are projections of laser centre
 - Virtual plane → “fan of lines” model

![Diagram showing laser calibration steps](image)
Experiments

• Sensor Prototype
 – 2 CCD cameras 1280x960, 30fps
 – 2 Lasers 635nm, 0-30mW, parallel lines
 – Control unit (power, sync)

• Prior Knowledge
 – CAD model
 – Hand-eye calibration
 – Field of view

• Measurement Process
 – Pre-calculated robot trajectory
 – On-line/real-time estimation
Experiments (II)

- **Test Target**
 - Precisely known geometry

- **Measurements**
 - Angle between adjacent planes
 - Distance between parallel planes
 - “Step” measurement
 - Wall thickness
"Step" - Parallel Planes

Measurement Result (Exp. Uncertainty, k=3)

Step: 0.024 +/- 0.016 mm

Angle: 0.03 +/- 0.06 deg
Angle between Planes

Measurement Result (Exp. Uncertainty, k=3)

Angle: 91.29 +/- 0.18 deg
Conclusions

- **Active stereo** triangulation sensor for vision-based surface inspection for aeronautic applications
- Application of robust **laser projectors**
- Geometric “**fan of lines**” model of the laser projector
- **Calibration strategy** based on simple targets
- Measurement results using reference part
- Future work
 - Extension to more complex projector patterns
 - Extension of the range of target geometries
 - Improved calibration strategy
Acknowledgements

The work presented in this paper was supported by the EC FP6 Project IPROMES (AST3-CT-2004-502905). The contributing members of the project team were: Harald Ganster, Gert Holler, Daniel Hrach, Miguel Ribo, and Gerald Schweighofer.