Historical roots, state of the art and challenges in image processing and image analysis

At the beginning some historical minds

- **1960s and the early 1970s:**
 - simple image processing operations on images of airborne cameras, for medical application and in microscopy
 - in computer centers and laboratories
 - mostly simple image improvement, no analysis

- **Middle of the 1970s:**
 - solid image sensors, micro computing and improved memory technology
 - image enhancement for simple image analysis
 - mostly simple image improvement, no analysis

- **TUI 1978 → start of my own investigations and R&D-efforts at Ilmenau Technical University (TUI):**
 - simple 2D measurement and sorting tasks for industrial applications
 - simple image sensor application in robotics

"eye-hand-system": camera controlled robot
Historical roots, state of the art and challenges in image processing and image analysis

- **TUI 1984:**
 - simple image sensor control for sorting and assembling of work pieces
 - assurance of completeness of automatic mounted device

- **TUI 1988:**
 - first steps in the field of color sensing and color image processing for quality assurance tasks
 - image based high precision 2D geometric measurement
 - subpixeling by different methods using different object models
 - star sensors for space ships

- **ZBS / TUI 1994:**
 - combination of color image processing and 2D – measurement for quality assurance
 - full video resolution (ca. 720 x 576 x 24 bit)
 - wafer inspection in video real time with special hardware processing units
 - 3D – data acquisition for industrial scenes and space applications (WAOSS in the project Mars 94/96)

Please start Wafer_kurz.avi for further information.
Historical roots, state of the art and challenges in image processing and image analysis

- **ZBS / TUI 1994:**
 - combination of color image processing and 2D – measurement for quality assurance
 - full video resolution (ca. 720 x 576 x 24 bit)
 - wafer inspection in video real time with special hardware processing units
 - 3D – data acquisition for industrial scenes and space applications (WAOSS in the project Mars 94/96)

Different measurement volumes:
- wide angle optical stereo scanner (WAOSS) for 3D measurement of MARS surface
- 3D industrial measurement technology (about 1m³)
- 3D electron microscopy

Please start Messen_3D_MPEG4V2.avi for further information.
Historical roots, state of the art and challenges in image processing and image analysis

- **ZBS 1998:**
 - combination of 3D – measurement and color image processing in complex scenes
 - inspection of waste water channels
 - please start Kanal_sehr_kurz.avi for further information

- **ZBS 2002:**
 - color sensor qualification, sophisticated analysis of color and multidimensional images
 - target related nonlinear color calibration, e.g. by tetrahedral color space subdivision
 - reference free color correction, color constancy & white balance

State of the art and challenges in image processing and image analysis

- **ZBS / MAZeT:**
 - color sensor calibration

- **ZBS / La Roche:**
 - color measurement on medical test strips
State of the art and challenges in image processing and image analysis

ZBS 2002:
- color sensor qualification, sophisticated analysis of color and multidimensional images
 - target related nonlinear color calibration, e.g. by tetrahedral color space subdivision
 - reference free color correction, color constancy & white balance

scene “cleaning things”:
automatic color correction →
ZBS compared with Canon and Leica

- distortion tolerant quality inspection at printed objects
- analysis of additional spectral channels, for instance fingerprints on bank notes
State of the art and challenges in image processing and image analysis

ZBS / TUI 2003:
- 3D data acquisition and processing of the resulting point clouds for nanospositioning- and nanomeasuring machines
 - measurement with the highest of movement precision and speed
 - volume of measurement: 25 x 25 x 5 mm³
 - precision: 0.1 nm, positioning tolerance: < 10 nm
- important tasks for ZBS are the interaction between object and probe, tip estimation and 3D image data reconstruction as well as compression according to signal quality

ZBS 2004:
- all around inspection of natural products and food (e.g. nuts)
 - extensive feature variety of both, normal surfaces and defects
 - very powerful algorithms are needed for feature extraction, learning and classification
 - in the discussed case: combination of texture, color and shape
 - high throughput (20 nuts per second / 1t per hour)
 - parallel processing with special units (signal processor / FPGA, . . .) is needed (in the discussed case of nut inspection: five processing units per inspection channel)

please start Nüsse-mit-VS-kurz.avi for further information
Challenges in image processing and image analysis

Branch of measurement

- **General demands:**
 - 3D – measurement at highest precision (lower nm range, down to subnanometers, e.g., 0.1 nm for measurement on 13 nm structures)
 - highest precision and nm-resolution (depth and lateral) for growing measurement areas, e.g., 500 mm wafers
 - very high data throughput, huge images, and enormous data amount

- **ZBS / TUI example:**
 - white light interferometry
 - computing of 2 Mio. interferograms needs very fast computer technology

- **ZBS / TUI in the near future:**
 - higher speed by a special kind of subsampling
 - higher accuracy and lower noise by spectral light composition and geometrical beam formation
 - higher lateral resolution by micro scanning and deconvolution

Branch of inspection and image interpretation, quality assurance

- **General demands:**
 - true color, highest precision of color measurement, using of perceptual equidistant color spaces
 - extraction of spectral signatures at high 2D resolutions, processing and analysis of such images
 - combination of color, spectral signature, texture, and 3D-shape

- **ZBS / TUI example:**
 - measurement of 3D shape of car inserts
 - detection of small defects in texture and color under geometric caused distortions (3D) in signal and texture

- **ZBS / TUI in the near future:**
 - model based illumination control and correction
 - modeling of texture distortion
 - distortion tolerant defect detection
Challenges in image processing and image analysis

Branch of image enhancement and image reconstruction

- **General demands:**
 - enhancement of heavy disturbed image data for image display and image analysis
 - elimination of negative influences of sensor device features

- **ZBS / TUI example:**
 - digitizing of analog photo plates with star images
 - elimination of distortions from astronomic instruments and disturbing effects from photographic film material (developing process, ageing etc.)
 - improvement of heavy disturbed images for medical applications

- **ZBS / TUI in the near future:**
 - regularized image reconstruction
 - using pixon image model for pixon regularized inverse filtering
 - adaptive filters, anisotrope inhomogeneous diffusion filters
Challenges in image processing and image analysis
Branch of image segmentation, object classification

- **General demands:**
 - using of multi channel images and spectral signatures for pixel feature extraction and segmentation
 - fusion of images from very different image sources (different sensor principles, e.g. optical, SAR, . . .)
 - improved and sophisticated description of class distributions in feature spaces
 - modern and powerful concepts for classification and learning systems

- **ZBS / TUI example:**
 - Structure based registration / image fusion of satellite images (ENVISAT / ENVI-LAND)
 - Segmentation of traffic scenes (cross roads, traffic control)

- **ZBS / TUI in the near future:**
 - Registration and segmentation of satellite images at highest resolutions (Rapid eye (<50cm), TerraSar)
 - sophisticated classification concepts and learning methods (land cover, change detection, . . .)
The ZBS modular program of post gradual education “Industrial image processing for automation and quality assurance”

- Example to analysis of traffic scenes and traffic control (ZBS VIP-Toolkit):
 - DemoDLR_k5sm_farbe_schnell.ppp

Classical paradigm of image processing and analysis (overview)

- The classical paradigm (well structured framework, using knowledge based and neural approaches in different processing steps, modern approaches use feedback as well)

- The knowledge based paradigm (center of gravity: knowledge representation, data mining, expert systems)

- The neural paradigm (center of gravity: bioinspired systems, selforganizing systems, neural networks, nonlinear collective processes)